In computing, a mouse (plural mice or mouses) functions as a pointing device by detecting two-dimensional motion relative to its supporting surface. Physically, a mouse consists of a small case, held under one of the user's hands, with one or more buttons. It sometimes features other elements, such as "wheels", which allow the user to perform various system-dependent operations, or extra buttons or features can add more control or dimensional input. The mouse's motion typically translates into the motion of a pointer on a display.
The name mouse, coined at the Stanford Research Institute, derives from the resemblance of early models (which had a cord attached to the rear part of the device, suggesting the idea of a tail) to the common eponymous rodent.
The first marketed integrated mouse — shipped as a part of a computer and intended for personal computer navigation — came with the Xerox 8010 Star Information System in 1981.
Technologies
Douglas Engelbart of the Stanford Research Institute invented the mouse in 1963
Early mice
Bill English, builder of Engelbart's original mouse,
Mechanical mice
An optical mouse uses a light-emitting diode and photodiodes to detect movement relative to the underlying surface, rather than moving some of its parts — as in a mechanical mouse.
Early optical mice, circa 1980, came in two different varieties:
These two mouse types had very different behaviors, as the Kirsch mouse used an x-y coordinate system embedded in the pad, and would not work correctly when rotated, while the Lyon mouse used the x-y coordinate system of the mouse body, as mechanical mice do.
As computing power grew cheaper, it became possible to embed more powerful special-purpose image-processing chips in the mouse itself. This advance enabled the mouse to detect relative motion on a wide variety of surfaces, translating the movement of the mouse into the movement of the pointer and eliminating the need for a special mouse-pad. This advance paved the way for widespread adoption of optical mice.
Modern surface-independent optical mice work by using an optoelectronic sensor to take successive pictures of the surface on which the mouse operates. Most of these mice use LEDs to illuminate the surface that they track over; marketers often mislabel these LED optical mice as laser mice, confusing them with true laser mice. Changes between one frame and the next are processed by the image processing part of the chip and translated into movement on the two axes using an optical flow estimation algorithm. For example, the Avago Technologies ADNS-2610 optical mouse sensor processes 1512 frames per second: each frame consisting of a rectangular array of 18×18 pixels, and each pixel can sense 64 different levels of gray. Laser mice
Optical mice have no rolling parts, and therefore (unlike mechanical mice, which can clog up with lint) they do not normally require maintenance other than removing debris that might collect under the light-emitter. However, they generally cannot track on glossy and transparent surfaces, including some mouse-pads, sometimes causing the cursor to drift unpredictably during operation. Mice with less image-processing power also have problems tracking fast movement, though high-end mice can track at 2 m/s (80 inches per second) and faster.
Proponents note that some models of laser mice can track on glossy and transparent surfaces, and have a much higher sensitivity than either their mechanical or optical counterparts. Such models of laser mice cost more than both their LED based counterparts and mechanical mice.
As of 2006, mechanical mice have lower average power demands than their optical counterparts. This typically has no practical impact for users of cabled mice (except possibly those used with battery-powered computers, such as notebook models), but has an impact on battery-powered wireless models.
Optical models will outperform mechanical mice on uneven, slick, squishy, sticky or loose surfaces, and generally in mobile situations lacking mouse pads. Since optical mice render movement based on an image which the LED illuminates, use with multi-colored mousepads may result in unreliable performance, however, laser mice do not suffer these problems and will track on such surfaces. The advent of affordable high-speed, low-resolution cameras and the integrated logic in optical mice provides an ideal laboratory for experimentation on next-generation input-devices. Experimenters can obtain low-cost components simply by taking apart a working mouse and changing the optics or by writing new software.
Optical versus mechanical mice
Inertial mice use a tuning fork or other accelerometer (US Patent 4787051) to detect movement for every axis supported. Usually cordless, they often have a switch to deactivate the movement circuitry between use, allowing the user freedom of movement without affecting the pointer position. A patent for an inertial mouse claims that such mice consume less power than optically based mice, offer an increased level of sensitivity, and reduced weight and increased ease-of-use.
Inertial mice
Also known as flying mice, bats, or wands, these devices generally function through ultrasound. Probably the best known example would be 3DConnexion/Logitech's SpaceMouse from the early 1990s.
In the late 1990s Kantek introduced the 3D RingMouse. This wireless mouse was worn on a ring around a finger, which enabled the thumb to access three buttons. The mouse was tracked in three dimensions by a base station. Despite a certain appeal, it was finally discontinued because it did not provide sufficient resolution.
A recent consumer 3D pointing device is the Wii Remote. While primarily a motion-sensing device (that is, it can tell which way it's going and which way it's tilted), Wii Remote can also detect its spatial position by comparing the distance and position of the lights from the IR emitter using its integrated IR camera (since the nunchuk lacks a camera, it can only tell its current heading and orientation). The obvious drawback to this approach is that it can only produce spatial coordinates while its camera can see the sensor bar.
3D mice
Double mouse allow for two mice to be used by both hands as input devices such as when operating various graphics and multimedia applications.
Double mouse
To transmit their input, typical cabled mice use a thin electrical cord terminating in a standard connector, such as RS-232C, PS/2, ADB or USB. Cordless mice instead transmit data via infrared radiation (see IrDA) or radio (including Bluetooth or WiFi), although many such cordless interfaces are themselves connected through the aforementioned wired serial busses.
While the electrical interface and the format of the data transmitted by commonly available mice is currently standardized on USB, in the past it varied between different manufacturers.
Connectivity and communication protocols
Standard PC mice once used the RS-232C serial standard (released in 1969), via a DB-9 connector. The Mouse Systems Corporation version used a five-byte protocol and supported three buttons. The Microsoft version used an incompatible three-byte protocol and only allowed for two buttons. Due to the incompatibility, some manufacturers sold serial mice with a mode switch: "PC" for MSC mode, "MS" for Microsoft mode.
Serial interface and protocol
For more details on this topic, see PS/2 connector. PS/2 interface and protocol
A Microsoft IntelliMouse relies on an extension of the PS/2 protocol: the ImPS/2 or IMPS/2 protocol (the abbreviation combines the concepts of "IntelliMouse" and "PS/2"). It initially operates in standard PS/2 format, for backwards compatibility. After the host sends a special command sequence, it switches to an extended format in which a fourth byte carries information about wheel movements. The IntelliMouse Explorer works analogously, with the difference that its 4-byte packets also allow for two additional buttons (for a total of five).
Mouse-vendors also use other extended formats, often without providing public documentation.
For 3D or 6DOF input, vendors have made many extensions both to the hardware and to software. In the late 90's Logitech created ultrasound based tracking which gave 3D input to a few millimeters accuracy, which worked well as an input device but failed as a money making product.
Extensions: IntelliMouse and others
In 1986 Apple first implemented the Apple Desktop Bus allowing the daisy-chaining together of up to 16 devices, including arbitrarily many mice and other devices on the same bus with no configuration whatsoever. Featuring only a single data pin, the bus used a purely polled approach to computer/mouse communications and survived as the standard on mainstream models (including a number of non-Apple workstations) until 1998 when iMac began the industry-wide switch to using USB. Beginning with the "Bronze Keyboard" PowerBook G3 in May 1999, Apple dropped the external ADB port in favor of USB, but retained an internal ADB connection in the PowerBook G4 for communication with its built-in keyboard and trackpad until early 2005.
Apple Desktop Bus
In 2000, Logitech introduced the "tactile mouse", which contained a small actuator that made the mouse vibrate. Such a mouse can augment user-interfaces with haptic feedback, such as giving feedback when crossing a window boundary.
Other unusual variants have included a mouse that a user holds freely in the hand, rather than on a flat surface, and that detects six dimensions of motion (the three spatial dimensions, plus rotation on three axes). Its vendor marketed it for business presentations in which the speaker stands or walks around. So far, these mice have not achieved widespread popularity.
Tactile mice
In contrast to the motion-sensing mechanism, the mouse's buttons have changed little over the years, varying mostly in shape, number, and placement. Engelbart's very first mouse had a single button; Xerox PARC soon designed a three-button model, but reduced the count to two for Xerox products. After experimenting with 4-button prototypes Apple reduced it back to one button with the Macintosh in 1984, while Unix workstations from Sun and others used three buttons. OEM bundled mice usually have between one and three buttons, although in the aftermarket many mice have always had five or more.
The three-button scrollmouse has become the most commonly available design. As of 2007 (and roughly since the late 1990s), users most commonly employ the second button to invoke a contextual menu in the computer's software user interface, which contains options specifically tailored to the interface element over which the mouse pointer currently sits. By default, the primary mouse button sits located on the left-hand side of the mouse, for the benefit of right-handed users; left-handed users can usually reverse this configuration via software.
On systems with three-button mice, pressing the center button (a middle click) typically opens a system-wide noncontextual menu. In the X Window System, middle-clicking by default pastes the contents of the primary buffer at the pointer's position. Many users of two-button mice emulate a three-button mouse by clicking both the right and left buttons simultaneously.
Buttons
Aftermarket manufacturers have long built mice with five or more buttons. Depending on the user's preferences and software environment, the extra buttons may allow forward and backward web-navigation, scrolling through a browser's history, or other functions, including mouse related functions like quick-changing the mouse's resolution/sensitivity. As with similar features in keyboards, however, not all software supports these functions. The additional buttons become especially useful in computer games, where quick and easy access to a wide variety of functions (for example, weapon-switching in first-person shooters) can give a player an advantage. Because software can map mouse-buttons to virtually any function, keystroke, application or switch, extra buttons can make working with such a mouse more efficient and easier.
In the matter of the number of buttons, Douglas Engelbart favored the view "as many as possible". The prototype that popularised the idea of three buttons as standard had that number only because "we could not find anywhere to fit any more switches".
Additional buttons
The scroll wheel, a notably different form of mouse-button, consists of a small wheel that the user can rotate to provide immediate one-dimensional input. Usually, this input translates into "scrolling" up or down within the active window or GUI-element . The scroll wheel can provide convenience, especially when navigating a long document. The scroll wheel nearly always includes a third (center) button. Under many Microsoft Windows applications, appropriate pressure on the wheel activates autoscrolling, and in conjunction with the control key (Ctrl) may give the capability of zooming in and out; applications that support this feature include Adobe Reader, Microsoft Word, Internet Explorer, Opera, Mozilla Firefox and Mulberry. Some applications also allow the user to scroll left and right by pressing the shift key while using the mouse wheel.
Note that scrollwheels almost always function more as two switches, rotating only in discrete "clicks" rather than actually acting as a third analog axis.
Manufacturers may refer to scroll-wheels by different names for branding purposes; Genius, for example, usually brand their scroll-wheel-equipped products "Netscroll".
Mouse Systems introduced the scroll-wheel commercially in 1995, envisioned to be used for scrolling, zooming or (with appropriate software) controlling a second mouse cursor.
Wheels
Rollover
Drag
Click
A Microsoft IntelliMouse relies on an extension of the PS/2 protocol: the ImPS/2 or IMPS/2 protocol (the abbreviation combines the concepts of "IntelliMouse" and "PS/2"). It initially operates in standard PS/2 format, for backwards compatibility. After the host sends a special command sequence, it switches to an extended format in which a fourth byte carries information about wheel movements. The IntelliMouse Explorer works analogously, with the difference that its 4-byte packets also allow for two additional buttons (for a total of five).
Mouse-vendors also use other extended formats, often without providing public documentation.
For 3D or 6DOF input, vendors have made many extensions both to the hardware and to software. In the late 90's Logitech created ultrasound based tracking which gave 3D input to a few millimeters accuracy, which worked well as an input device but failed as a money making product.
Extensions: IntelliMouse and others
In 1986 Apple first implemented the Apple Desktop Bus allowing the daisy-chaining together of up to 16 devices, including arbitrarily many mice and other devices on the same bus with no configuration whatsoever. Featuring only a single data pin, the bus used a purely polled approach to computer/mouse communications and survived as the standard on mainstream models (including a number of non-Apple workstations) until 1998 when iMac began the industry-wide switch to using USB. Beginning with the "Bronze Keyboard" PowerBook G3 in May 1999, Apple dropped the external ADB port in favor of USB, but retained an internal ADB connection in the PowerBook G4 for communication with its built-in keyboard and trackpad until early 2005.
Apple Desktop Bus
In 2000, Logitech introduced the "tactile mouse", which contained a small actuator that made the mouse vibrate. Such a mouse can augment user-interfaces with haptic feedback, such as giving feedback when crossing a window boundary.
Other unusual variants have included a mouse that a user holds freely in the hand, rather than on a flat surface, and that detects six dimensions of motion (the three spatial dimensions, plus rotation on three axes). Its vendor marketed it for business presentations in which the speaker stands or walks around. So far, these mice have not achieved widespread popularity.
Tactile mice
In contrast to the motion-sensing mechanism, the mouse's buttons have changed little over the years, varying mostly in shape, number, and placement. Engelbart's very first mouse had a single button; Xerox PARC soon designed a three-button model, but reduced the count to two for Xerox products. After experimenting with 4-button prototypes Apple reduced it back to one button with the Macintosh in 1984, while Unix workstations from Sun and others used three buttons. OEM bundled mice usually have between one and three buttons, although in the aftermarket many mice have always had five or more.
The three-button scrollmouse has become the most commonly available design. As of 2007 (and roughly since the late 1990s), users most commonly employ the second button to invoke a contextual menu in the computer's software user interface, which contains options specifically tailored to the interface element over which the mouse pointer currently sits. By default, the primary mouse button sits located on the left-hand side of the mouse, for the benefit of right-handed users; left-handed users can usually reverse this configuration via software.
On systems with three-button mice, pressing the center button (a middle click) typically opens a system-wide noncontextual menu. In the X Window System, middle-clicking by default pastes the contents of the primary buffer at the pointer's position. Many users of two-button mice emulate a three-button mouse by clicking both the right and left buttons simultaneously.
Buttons
Aftermarket manufacturers have long built mice with five or more buttons. Depending on the user's preferences and software environment, the extra buttons may allow forward and backward web-navigation, scrolling through a browser's history, or other functions, including mouse related functions like quick-changing the mouse's resolution/sensitivity. As with similar features in keyboards, however, not all software supports these functions. The additional buttons become especially useful in computer games, where quick and easy access to a wide variety of functions (for example, weapon-switching in first-person shooters) can give a player an advantage. Because software can map mouse-buttons to virtually any function, keystroke, application or switch, extra buttons can make working with such a mouse more efficient and easier.
In the matter of the number of buttons, Douglas Engelbart favored the view "as many as possible". The prototype that popularised the idea of three buttons as standard had that number only because "we could not find anywhere to fit any more switches".
Additional buttons
The scroll wheel, a notably different form of mouse-button, consists of a small wheel that the user can rotate to provide immediate one-dimensional input. Usually, this input translates into "scrolling" up or down within the active window or GUI-element . The scroll wheel can provide convenience, especially when navigating a long document. The scroll wheel nearly always includes a third (center) button. Under many Microsoft Windows applications, appropriate pressure on the wheel activates autoscrolling, and in conjunction with the control key (Ctrl) may give the capability of zooming in and out; applications that support this feature include Adobe Reader, Microsoft Word, Internet Explorer, Opera, Mozilla Firefox and Mulberry. Some applications also allow the user to scroll left and right by pressing the shift key while using the mouse wheel.
Note that scrollwheels almost always function more as two switches, rotating only in discrete "clicks" rather than actually acting as a third analog axis.
Manufacturers may refer to scroll-wheels by different names for branding purposes; Genius, for example, usually brand their scroll-wheel-equipped products "Netscroll".
Mouse Systems introduced the scroll-wheel commercially in 1995, envisioned to be used for scrolling, zooming or (with appropriate software) controlling a second mouse cursor.
Wheels
Rollover
Drag
Click
- (left) Single-click
(left) Double-click
(left) Triple-click
Right-click
Rocker
- Combination of right-click then left-click or keyboard letter
Combination of left-click then right-click or keyboard letter
Combination of left or right-click and the mouse wheel Button techniques
Select
Launch (an application)
Cut
Paste
Drag and drop Common button operations
The computer-industry often measures mouse sensitivity in terms of counts per inch (CPI), commonly expressed less correctly as dots per inch (DPI) — the number of steps the mouse will report when it moves one inch. In early mice, this specification was called pulses per inch (ppi). If the default mouse-tracking condition involves moving the pointer by one screen-pixel or dot on-screen per reported step, then the CPI does equate to DPI: dots of pointer motion per inch of mouse motion. The CPI or DPI as reported by manufacturers depends on how they make the mouse; the higher the CPI, the faster the pointer moves with mouse movement. However, software can adjust the mouse sensitivity, making the cursor move faster or slower than its DPI. Current software can change the speed of the pointer dynamically, taking into account the mouse's absolute speed and the movement from the last stop-point. Different software may name the settings "acceleration" or "speed" — referring respectively to "threshold" and "pointer precision".
For simple software, when the mouse starts to move, the software will count the number of "counts" received from the mouse and will move the pointer across the screen by that number of pixels (or multiplied by a factor f1=1,2,3). So, the pointer will move slowly on the screen, having a good precision. When the movement of the mouse reaches the value set for "threshold", the software will start to move the pointer more quickly; thus for each number n of counts received from the mouse, the pointer may move (f2 x n) pixels, where f2=2,3...10. Usually, the user can set the value of f2 by changing the "acceleration" setting.
Operating systems sometimes apply acceleration, referred to as "ballistics", to the motion reported by the mouse. For example, versions of Windows prior to Windows XP doubled reported values above a configurable threshold, and then optionally doubled them again above a second configurable threshold. These doublings applied separately in the X and Y directions, resulting in very nonlinear response. For example one can see how the things work in Microsoft Windows NT. Starting with Windows XP OS version of Microsoft and many OS versions for Apple Macintosh, computers use a smoother ballistics calculation that compensates for screen-resolution and has better linearity.
Mouse speed
The first known publication of the word "mouse" is in Bill English's 1965 publication "Computer-Aided Display Control"
The Compact Oxford English Dictionary (third edition) and the fourth edition of The American Heritage Dictionary of the English Language endorse both computer mice and computer mouses as correct plural forms for computer mouse. The form mice, however, appears most commonly, while some authors of technical documents may prefer either mouse devices or the more generic pointing devices. The plural mouses treats mouse as a "headless noun."
Etymology
Accessories
- Combination of right-click then left-click or keyboard letter
1 comment:
Software for mice operations offers multiple tools that work seamlessly together to create the best experience for event managers and their clients. Our solutions cater to companies of any size and help you with everything from event applications and planning to daily operations and running your business. They’ll free up your precious time, get you more event requests and increase revenue per guest. For more details please go to our website: http://webcrstravel.com/
Post a Comment