Sunday, December 16, 2007

Plantae
Green algae
Land plants (embryophytes)
Nematophytes
Plants are a major group of life forms and include familiar organisms such as trees, herbs, bushes, grasses, vines, ferns, and mosses. About 350,000 species of plants, defined as seed plants, bryophytes, ferns and fern allies, are estimated to exist currently. As of 2004, some 287,655 species had been identified, of which 258,650 are flowering and 15,000 bryophytes. Green plants, sometimes called metaphytes, obtain most of their energy from sunlight via a process called photosynthesis.

Chlorophyta
Charophyta
Non-vascular land plants (bryophytes)

  • Marchantiophyta—liverworts
    Anthocerotophyta—hornworts
    Bryophyta—mosses
    Horneophytopsida
    Vascular plants (tracheophytes)

    • Rhyniophyta—rhyniophytes
      Zosterophyllophyta—zosterophylls
      Lycopodiophyta—clubmosses
      Trimerophytophyta—trimerophytes
      Pteridophyta—ferns and horsetails
      Ophioglossophyta - adders'-tongues
      Seed plants (spermatophytes)

      • Pteridospermatophyta—seed ferns
        Pinophyta—conifers
        Cycadophyta—cycads
        Ginkgophyta—ginkgo
        Gnetophyta—gnetae
        Magnoliophyta—flowering plants Classification

        Main article: Embryophyte Embryophytes
        The algae comprise several different groups of organisms that produce energy through photosynthesis. However, they are not classified within the Kingdom Plantae but mostly in the Kingdom Protista. Most conspicuous are the seaweeds, multicellular algae that may roughly resemble terrestrial plants, but are classified among the green, red, and brown algae. These and other algal groups also include various single-celled organisms.
        The embryophytes developed from green algae; the two groups are collectively referred to as the green plants or Viridiplantae. The Kingdom Plantae is often taken to mean this monophyletic grouping. With a few exceptions among the green algae, all such forms have cell walls containing cellulose and chloroplasts containing chlorophylls a and b, and store food in the form of starch. They undergo closed mitosis without centrioles, and typically have mitochondria with flat cristae.
        The chloroplasts of green plants are surrounded by two membranes, suggesting they originated directly from endosymbiotic cyanobacteria. The same is true of the red algae, and the two groups are generally believed to have a common origin (see Archaeplastida). In contrast, most other algae have chloroplasts with three or four membranes. They are not close relatives of the green plants, presumably in origin acquiring chloroplasts separately from ingested or symbiotic green and red algae.
        Unlike embryophytes and algae, fungi are not photosynthetic, but are saprotrophs: obtaining food by breaking down and absorbing surrounding materials. Fungi are not plants, but were historically treated as closely related to plants, and were considered to be in the purview of botanists. It has long been recognized that fungi are evolutionarily closer to animals than to plants, but they still are covered more in depth in introductory botany courses and are not necessarily touched upon in introductory zoology courses. Most fungi are formed by microscopic structures called hyphae, which may or may not be divided into cells but contain eukaryotic nuclei. Fruiting bodies, of which mushrooms are most familiar, are the reproductive structures of fungi. They are not related to any of the photosynthetic groups, but are close relatives of animals. Therefore, the fungi are in a kingdom of their own.

        Algae and fungi
        The study of plant uses by people is termed economic botany or ethnobotany. They are often used as synonyms but some consider economic botany to focus mainly on uses of modern cultivated plants, while ethnobotany studies uses of indigenous plants by native peoples. Human cultivation of plants is part of agriculture, which is the basis of human civilization. Plant agriculture is subdivided into agronomy, horticulture and forestry.

        Importance
        Virtually all human nutrition depends on land plants directly or indirectly. Much of human nutrition depends on cereals, especially maize or corn, wheat and rice or other staple crops such as potato, cassava, and legumes. Other parts from plants that are eaten include fruits, vegetables, nuts, herbs, spices and edible flowers. Beverages from plants include coffee, tea, wine, beer and alcohol. Sugar is obtained mainly from sugar cane and sugar beet. Cooking oils and margarine come from corn, soybean, canola, safflower, sunflower, olive and others. Food additives include gum arabic, guar gum, locust bean gum, starch and pectin.

        Food
        Wood is used for buildings, furniture, paper, cardboard, musical instruments and sports equipment. Cloth is often made from cotton, flax or synthetic fibers derived from cellulose, such as rayon and acetate. Renewable fuels from plants include firewood, peat and many other biofuels. Coal and petroleum are fossil fuels derived from plants. Medicines derived from plants include aspirin, taxol, morphine, quinine, reserpine, colchicine, digitalis and vincristine. There are hundreds of herbal supplements such as ginkgo, Echinacea, feverfew, and Saint John's wort. Pesticides derived from plants include nicotine, rotenone, strychnine and pyrethrins. Drugs obtained from plants include opium, cocaine and marijuana. Poisons from plants include ricin, hemlock and curare. Plants are the source of many natural products such as fibers, essential oils, dyes, pigments, waxes, tannins, latex, gums, resins, alkaloids, amber and cork. Products derived from plants include soaps, paints, shampoos, perfumes, cosmetics, turpentine, rubber, varnish, lubricants, linoleum, plastics, inks, chewing gum and hemp rope. Plants are also a primary source of basic chemicals for the industrial synthesis of a vast array of organic chemicals. These chemicals are used in a vast variety of studies and experiments.

        Nonfood products
        Thousands of plant species are cultivated to beautify the human environment as well as to provide shade, modify temperatures, reduce windspeed, abate noise, provide privacy and prevent soil erosion. People use cut flowers, dried flowers and house plants indoors. Outdoors, they use lawngrasses, shade trees, ornamental trees, shrubs, vines, herbaceous perennials and bedding plants. Images of plants are often used in art, architecture, humor, language and photography and on textiles, money, stamps, flags and coats of arms. Living plant art forms include topiary, bonsai, ikebana and espalier. Ornamental plants have sometimes changed the course of history, as in tulipomania. Plants are the basis of a multi-billion dollar per year tourism industry which includes travel to arboretums, botanical gardens, historic gardens, national parks, tulip festivals, rainforests, forests with colorful autumn leaves and the National Cherry Blossom Festival. Venus flytrap, sensitive plant and resurrection plant are examples of plants sold as novelties.

        Aesthetic uses
        Tree rings are an important method of dating in archeology and serve as a record of past climates. Basic biological research has often been done with plants, such as the pea plants used to derive Gregor Mendel's laws of genetics. Space stations or space colonies may one day rely on plants for life support. Plants are used as national and state emblems, including state trees and state flowers. Ancient trees are revered and many are famous. Numerous world records are held by plants. Plants are often used as memorials, gifts and to mark special occasions such as births, deaths, weddings and holidays. Plants figure prominently in mythology, religion and literature. The field of ethnobotany studies plant use by indigenous cultures which helps to conserve endangered species as well as discover new medicinal plants. Gardening is the most popular leisure activity in the U.S. Working with plants or horticulture therapy is beneficial for rehabilitating people with disabilities. Certain plants contain psychotropic chemicals which are extracted and ingested, including tobacco, cannabis (marijuana), and opium.

        Scientific and cultural uses
        Weeds are plants that grow where people do not want them. People have spread plants beyond their native ranges and some of these introduced plants become invasive, damaging existing ecosystems by displacing native species. Invasive plants cause billions of dollars in crop losses annually by displacing crop plants, they increase the cost of production and the use of chemical means to control them effects the environment.
        Plants may cause harm to people. Plants that produce windblown pollen invoke allergic reactions in people who suffer from hay fever. A wide variety of plants are poisonous. Several plants cause skin irritations when touched, such as poison ivy. Certain plants contain psychotropic chemicals, which are extracted and ingested or smoked, including tobacco, cannabis (marijuana), cocaine and opium, causing damage to health or even death[2][3]. Both illegal and legal drugs derived from plants have negative effects on the economy, effecting worker productivity and law enforcement costs.[4][5]. Some plants cause allergic reactions in people and animals when ingested, while other plants cause food intolerances that negatively effect health.

        Negative effects
        Most of the solid material in a plant is taken from the atmosphere. Through a process known as photosynthesis, plants use the energy in sunlight to convert carbon dioxide from the atmosphere into simple sugars. These sugars are then used as building blocks and form the main structural component of the plant. Plants rely on soil primarily for support and water (in quantitative terms), but also obtain nitrogen, phosphorus and other crucial elemental nutrients. For the majority of plants to grow successfully they also require oxygen in the atmosphere (for respiration in the dark) and oxygen around their roots. However, a few specialized vascular plants, such as Mangroves, can grow with their roots in anoxic conditions.

        Growth
        The genotype of a plant affects its growth, for example selected varieties of wheat grow rapidly, maturing within 110 days, whereas others, in the same environmental conditions, grow more slowly and mature within 155 days.
        Annual: live and reproduce within one growing season.
        Biennial: live for two growing seasons; usually reproduce in second year.
        Perennial: live for many growing seasons; continue to reproduce once mature. Factors affecting growth
        The photosynthesis conducted by land plants and algae is the ultimate source of energy and organic material in nearly all ecosystems. Photosynthesis radically changed the composition of the early Earth's atmosphere, which as a result is now 21% oxygen. Animals and most other organisms are aerobic, relying on oxygen; those that do not are confined to relatively rare anaerobic environments. Plants are the primary producers in most terrestrial ecosystems and form the basis of the food web in those ecosystems. Many animals rely on plants for shelter as well as oxygen and food.
        Land plants are key components of the water cycle and several other biogeochemical cycles. Some plants have coevolved with nitrogen fixing bacteria, making plants an important part of the nitrogen cycle. Plant roots play an essential role in soil development and prevention of soil erosion. The Earth's biomes are named for the type of vegetation because plants are the dominant organisms in biomes.
        Numerous animals have coevolved with plants. Many animals pollinate flowers in exchange for food in the form of pollen or nectar. Many animals disperse seeds, often by eating fruit and passing the seeds in their feces. Myrmecophytes are plants that have coevolved with ants. The plant provides a home, and sometimes food, for the ants. In exchange, the ants defend the plant from herbivores and sometimes competing plants. Ant wastes provide organic fertilizer.
        The majority of plant species have various kinds of fungi associated with their root systems in a kind of mutualistic symbiosis known as mycorrhiza. The fungi help the plants gain water and mineral nutrients from the soil, while the plant gives the fungi carbohydrates manufactured in photosynthesis. Some plants serve as homes for endophytic fungi that protect the plant from herbivores by producing toxins. The fungal endophyte, Neotyphodium coenophialum, in tall fescue (Festuca arundinacea) does tremendous economic damage to the cattle industry in the U.S.
        Various forms of parasitism are also fairly common among plants, from the semi-parasitic mistletoe that merely takes some nutrients from its host, but still has photosynthetic leaves, to the fully parasitic broomrape and toothwort that acquire all their nutrients through connections to the roots of other plants, so have no chlorophyll. Some plants, known as myco-heterotrophs, parasitize mycorrhizal fungi, and hence act as epiparasites on other plants.
        Many plants are epiphytes, meaning they grow on other plants, usually trees, without parasitizing them. Epiphytes may indirectly harm their host plant by intercepting mineral nutrients and light that the host would otherwise receive. The weight of large numbers of epiphytes may break tree limbs. Many orchids, bromeliads, ferns and mosses often grow as epiphytes. Bromeliad epiphytes accumulate water in leaf axils to form phytotelmata, complex aquatic food webs.
        A few plants are carnivorous, such as the Venus Flytrap and sundew. They trap small animals and digest them to obtain mineral nutrients, especially nitrogen.

        Ecological relationships
        See also: Evolutionary history of plants
        Plant fossils include roots, wood, leaves, seeds, fruit, pollen, spores, phytoliths, and amber (the fossilized resin produced by some plants). Fossil land plants are recorded in terrestrial, lacustrine, fluvial and nearshore marine sediments. Pollen, spores and algae (dinoflagellates and acritarchs) are used for dating sedimentary rock sequences. The remains of fossil plants are not as common as fossil animals, although plant fossils are locally abundant in many regions worldwide.
        Early fossils of these ancient plants show the individual cells within the plant tissue. The Devonian period also saw the evolution of what many believe to be the first modern tree, Archaeopteris. This fern-like tree combined a woody trunk with the fronds of a fern, but produced no seeds.
        The Coal Measures are a major source of Palaeozoic plant fossils, with many groups of plants in existence at this time. The spoil heaps of coal mines are the best places to collect; coal itself is the remains of fossilised plants, though structural detail of the plant fossils is rarely visible in coal. In the Fossil Forest at Victoria Park in Glasgow, Scotland, the stumps of Lepidodendron trees are found in their original growth positions.
        The fossilized remains of conifer and angiosperm roots, stems and branches may be locally abundant in lake and inshore sedimentary rocks from the Mesozoic and Caenozoic eras. Sequoia and its allies, magnolia, oak, and palms are often found.
        Petrified wood is common in some parts of the world, and is most frequently found in arid or desert areas where it is more readily exposed by erosion. Petrified wood is often heavily silicified (the organic material replaced by silicon dioxide), and the impregnated tissue is often preserved in fine detail. Such specimens may be cut and polished using lapidary equipment. Fossil forests of petrified wood have been found in all continents.
        Fossils of seed ferns such as Glossopteris are widely distributed throughout several continents of the southern hemisphere, a fact that gave support to Alfred Wegener's early ideas regarding Continental drift theory.

        Internal distribution
        The most abundant compound in most plants is water, serving a large role in the various processes taking place. Transpiration is the main process a plant can call upon to move compounds within its tissues. The basic minerals and nutrients a plant is composed of remain, generally, within the plant. Water, however, is constantly being lost from the plant through its metabolic and photosynthetic processes to the atmosphere.
        Water is transpired from the plants leaves via stomata, carried there via leaf veins and vascular bundles within the plants cambium layer. The movement of water out of the leaf stomata creates, when the leaves are considered collectively, a transpiration pull. The pull is created through water surface tension within the plant cells. The draw of water upwards is assisted by the movement of water into the roots via osmosis. This process also assists the plant in absorbing nutrients from the soil as soluble salts, a process known as absorption.

        Transpiration
        Xylem cells move water and nutrient solutions upwards towards other plant organs from the roots and fine root hairs. Living roots cells actively absorb water in the absence of transpiration pull via osmosis creating root pressure. There are times when plants do not have transpiration pull, usually due to lack of light or other environmental elements. Water in the plant tissues may move to the roots to assist in passive absorption.

        Absorption
        Xylem and phloem tissues are involved in the conduction processes within plants. The movement of foods throughout the plant takes place mainly in the phloem. Plant conduction (food movement) is from an area of high food content, place of manufacture (photosynthesis) or storage, to a place of food utilisation, or from a point of manufacture to storage tissues. Mineral salts are translocated in the xylem tissues.

        External distribution

        Species estimate and counts:

        • Prance, G. T. (2001). Discovering the Plant World. Taxon 50: 345-359.
          International Union for Conservation of Nature and Natural Resources (IUCN) Species Survival Commission (2004). IUCN Red List of Threatened Species [6].
          Both the above are cited in Nature Conservancy, Spring 2006, p. 14.
          Kenrick, Paul & Crane, Peter R. (1997). The Origin and Early Diversification of Land Plants: A Cladistic Study. Washington, D. C.: Smithsonian Institution Press. ISBN 1-56098-730-8.
          Raven, Peter H., Evert, Ray F., & Eichhorn, Susan E. (2005). Biology of Plants (7th ed.). New York: W. H. Freeman and Company. ISBN 0-7167-1007-2.
          Taylor, Thomas N. & Taylor, Edith L. (1993). The Biology and Evolution of Fossil Plants. Englewood Cliffs, NJ: Prentice Hall. ISBN 0-13-651589-4.
          Evans, L. T. (1998). Feeding the Ten Billion - Plants and Population Growth. Cambridge University Press. Paperback, 247 pages. ISBN 0-521-64685-5.
          Trewavas, A. (2003). Aspects of Plant Intelligence, Annals of Botany 92: 1-20.

No comments: